食品伙伴网服务号
当前位置: 首页 » 仪器设备 » 理化检测仪器 » 光谱分析仪器 » 正文

【收藏】学习AAS必备知识!

放大字体  缩小字体 发布日期:2023-04-26
核心提示:原子吸收光谱分析法是实验室元素分析最常用的方法之一,本文将原子光谱仪的检测原理、分类,火焰,以及常见故障解决办法等内容进
原子吸收光谱分析法是实验室元素分析最常用的方法之一,本文将原子光谱仪的检测原理、分类,火焰,以及常见故障解决办法等内容进行分享,希望能对您的工作、学习有所帮助。

原子吸收光谱分析(又称原子吸收分光光度分析)是基于从光源辐射出待测元素的特征光波,通过样品的蒸汽时,被蒸汽中待测元素的基态原子所吸收,由辐射光波强度减弱的程度,可以求出样品中待测元素的含量。

原子吸收光谱的理论基础


在原子中,电子按一定的轨道环绕原子核旋转,各个电子的运动状态是由4个量子数来描述。不同量子数的电子,具有不同的能量,原子的能量为其所含电子能量的总和。原子处于完全游离状态时,具有最低的能量,称为基态。在热能、电能或光能的作用下,基态原子吸收了能量,最外层的电子产生跃迁,从低能态跃迁到较高能态,它就成为激发态原子。激发态原于很不稳定,当它回到基态时,这些能量以热或光的形式辐射出来,成为发射光谱。


其辐射能量大小,用下列公式示:

ΔE=Eq-E0=hv=hc/λ

式中:

h——普朗克常数,其数值为:

6.626X10-23J·S;
C——光速(3X105km/s);
V.入—一分别为发射光的频率和波长;
E0、Eq—一分别代表基态和激发态原子的能量,它们与原子的结构有关。


由于不同元素的原子结构不同,所以一种元素的原子只能发射由其已与Eq决定的特定频率的光。这样,每一种元素都有其特征的光谱线。即使同一种元素的原子,它们的Eq也可以不同,也能产生不同的谱线。原子吸收光谱是源于发射光谱的逆过程。基态原子只能吸收频率为:

υ=(Eq-E0)/h的光,跃迁到高能态Eq。因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素有其特征的吸收光谱线。

原子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁回基态时,称为共振跃迁。这种振跃迁所发射的谱线称为共振发射线,与此过程相反的谱线称为共振吸收线。元素的共振吸收线一般有好多条,其测定灵敏度也不同。在测定时,一般选用灵敏线,但当被测元素含量较高时,也可采用次灵敏线(有些元素有好几条线,有的只有一条,次灵敏线能量太低不能使用)。

吸收强度与分析物质浓度的关系

原子蒸气对不同频率的光具有不同的吸收率,因此,原子蒸气对光的吸收是频率的函数。但是对固定频率的光,原子蒸气对它的吸收是与单位体积中的原子的浓度成正比并符合朗格一比尔定律。当一条频率为υ,强度为I0的单色光透过长度为L的原子蒸气层后,透射光的强度为Iv,令比例常数为Kv,则吸光度A与试样中基态原子的浓度N。有如下关系:

A=lg(I0/I)=KLN
在原子吸收光谱法中,原子池中激发态的原子和离子数量很少,因此蒸气中的基态原子数目实际上接近于被测元素总的原子数目,与式样中被测元素的浓度C成正比。因此吸光度A与试样中被测元素浓度C的关系如下:

A=KC

式中:

K—吸收系数只有当入射光是单色光,上式才能成立。由于原子吸收光的频率范围很窄(0.01nrn以下),只有锐线光源才能满足要求。在原子吸收光谱分析中,出于存在多种谱线变宽的因素,例如自然变宽、多普勒(热)变宽、同位素效应、罗兰兹(压力)变宽、场变宽、自吸和自蚀变宽等,引起了发射线扣吸收线变宽,尤以发射线变宽影响最大。谱线变宽能引起校正曲线弯曲,灵敏度下降。减小校正曲线弯曲的几点措施:

1、选择性能好的空心阴极灯,减少发射线变宽。
2、灯电流不要过高,减少自吸变宽。
3、分析元素的浓度不要过高。
4、对准发射光,使其从吸收层中央穿过。
5、工作时间不要太长,避免光电倍增管和灯过热。
6、助燃气体压力不要过高,可减小压力变宽。

原子吸收光谱仪分类

目前,市场上常见的原子吸收光谱仪有火焰式、石墨炉式、氢化式、冷蒸汽式等几类。

1、火焰式原子吸收光谱法( FL—AAS)

直接将样品导入仪器进行侦测。其不同于感应耦合电浆原子发射光谱法者,为只能进行单一元素的检测,及较不会受到元素间光谱线的干扰。笑气/乙炔或空气/乙炔火焰系作为将吸入的样品解离的能源,使样品变成自由的原子态,而可吸收待测原子的特定光线,分析某些元素时,所使用的温度或火焰的形式极重要,若未使用适当的火焰及分析条件,则化学和离子化的干扰就会产生。

2、石墨炉式原子吸收光谱法( GF—AAS)

此法系以电热式石墨炉取代火焰作为热源,石墨炉可分数个加热程序对样品进行渐进式的加热,因此,针对样品溶液中的有机、无机分子和盐类的溶剂之蒸发、干燥、分解及最后形成原子的过程,在火焰式原子吸收光谱法或感应耦合电浆原子发射光谱法中,于数个毫秒内即完成,但在石墨炉中则可于所设定的温度及时间区间中,用足够的时间进行之,且可利用升温程序或基体改进剂剂,去除待测物样品中不需要的基质成分,以减少干扰。


本方法的优点是可提供极低的测测极限,若样品相当干净,则极易使用本方法执行样品检测。由于本方法极其灵敏,因此,干扰问题较严重,针对基质复杂的样品,如何找到最佳的消化方法,加热温度和加热时间及基质修饰剂是一大挑战。

3、氢化式原子吸收光谱法( HG—AAS)

利用选择性的化学还原反应,将样品消化液中的砷或硒还原成氢化物而予分离,因此本方法的优点是能将此两种元素从复杂的样品中分离出来,而无其他分析方法可能遭遇的干扰问题。报告指出,在下列情况下会有严重的干扰问题:
(1)有铜、银、汞等易还原的金属存在时;
(2)有大于200mg/L之高浓度过渡元素存在时,
(3)样品消化液中有氧化剂(氮氧化物)存在时。

4、冷蒸气原子吸收光谱法( CV—AAS)

是利用选择性的化学还原反应,只将样品消化液中的汞还原。本方法对汞的分析极灵敏,但会受样品中挥发性有机物、氯、和硫化物的干扰。


原子化过程

原子吸收光谱法采用的原子化方法主要有火焰法、石墨炉法和氢化物发生法。
1、火焰原子化
这过程中大致分为两个主要阶段:
(1)从溶液雾化至蒸发为分子蒸气的过程。主要依赖于雾化器的性能、雾滴大小、溶液性质、火焰温度和溶液的浓度等。
(2)从分子蒸气至解离成基态原子的过程。主要依赖于被测物形成分子们键能,同时还与火焰的温度及气氛相关。分子的离解能越低,对离解越有利,就原子吸收光谱分析而言,解高能小于3.5eV的分子,容易被解离,当大于5eV时,解离就比较困难。

2、石墨炉原子化
样品置于石墨管内,用大电流通过石墨管,产生3000℃以下的高温,使样品蒸发和原子化。为了阻止石墨管在高温氧化,在石墨管内、外部用惰性气体保护。石置炉加温阶段一般可分为:
(1)干燥:

此阶段是将溶剂蒸发掉,加热的温度控制在溶剂的沸点左右,但应避免暴沸和发生溅射,否则会严重影响分析精度和灵敏度。(干燥温度一般分三步,第一步一般从室温开始由于南北方温差大,现在多数从70度或以上开始,保持大约十秒钟以上,第二步90--100度保持十秒,第三步110--120度保持十秒以上)

(2)灰化:

这是比较重要的加热阶段。其目的是在保证被铡元素没有明显损失的前提下,将样品加热到尽可能高的温度,破坏或蒸发掉基体,减少原子化阶段可能遇到的元素间干扰,以及光散射或分子吸收引起的背景吸收,同时使被铡元素变为氧化物或其他类型物。低温元素灰化一步就可以了,原子化温度在一千度一下的,中温元素灰化温度一般二步,高温元素建议三步以上,中温是1100——2000高温2100——2900度。不同厂家,相同厂家不同型号温度不一样,测试难的元素和样品需要积累经验。


(3)原子化:

在高温下,把被测元素的氧化物或其他类型物热解和还原(主要的)成自由原子蒸气。

3、氢化物发生法
在酸性介质中,以硼氢化钾(KBH4)作为还原剂,使锗、锡、铅、砷、锑、秘、硒和储还原生成共价分于型氢化物的气体,然后将这种气体引入火焰或加热的石英管中,进行原子化。

AsCl3+4KBH4+HCl+8H2O=AsH3+4KCl+4HBO2+13H2

火焰

1、火焰的种类
原子吸收光谱分析中常用的火焰有:空气一乙炔、空气一煤气(丙烷)和一氧化二氮一乙炔等火焰。
(1)空气一乙炔。这是最常用的火焰。此焰温度高(2300℃),乙炔在燃烧过程中产生的半分解物C*、CO*、CH*等活性基团,构成强还原气氛,特别是富燃火焰,具有较好的原子化能力。
(2)空气一煤气(丙烷)。此焰燃烧速度慢、安全、温度较低(1840~1925℃),火焰稳定透明。火焰背景低,适用于易离解和干扰较少的元素,但化学干扰多。
(3)一氧化二氮一乙炔。由于在一氧化二氮中,含氧量比空气高,所以这种火焰有更高的温度(约3000℃)。

在富燃火焰中,除了产生半分解物C*、CO*、CH*外,还有更强还原性的成分CN*及NH*等,这些成分能更有效地抢夺金属氧化物中氧,从而达到原子化的目的。这就是为什么空气乙炔火焰不能测定的硅、铝、钛、铼等特别难离解的元素,在一氧化二氮一乙炔火焰中就能测定的原因。本文除特指外均属空气一乙炔火焰。

2、火焰的类型
(1) 化学计量火焰。又称中性火焰,这种火焰的燃气及助燃气,基本上是按照它们之间的化学反应式提供的。对空气一乙炔火焰,空气与乙炔之比约为4:1。火焰是蓝色透明的,具有温度高,干扰少,背景发射低的特点。火焰中半分解产物比贫燃火焰高,但还原气氛不突出,对火焰中不特别易形成单氧化物的元素,除碱金属外,采用化学计量火焰进行分析为好。

(2) 贫焰火焰。当燃气与助燃气之比小于化学反应所需量时,就产生贫燃火焰。其空气与乙炔之比为4:1至6:1。火焰清晰,呈淡蓝色。由于大量冷的助燃气带走火焰中的热量,所以温度较低。由于燃烧充分,火焰中半分解产物少,还原性气氛低,不利于较难离解元素的原子化,不能用于易生成单氧化物元素的分析。但温度低对易离解元素的测定有利。

(3)富燃火焰。燃气与助燃气之比大于化学反应量时,就产生富燃火焰。空气与乙炔之比为4:1.2~2.5或更大,由于燃烧不充分,半分解物浓度大,具有较强的还原气氛。温度略低于化学计量火焰,中间薄层区域比较大,对易形成单氧化物难离解元素的测定有利,但火焰发射和火焰吸收及背景较强,干扰较多,不如化学计量火焰稳定。


原子吸收常见问题处理

1、为啥原子吸收仪器的灵敏度会突然下降了一半?

通常原子吸收分光光度计灵敏度下降的原因有:

A、元素灯能量下降,低于原始能量得2/3;

B、雾化器故障,雾化效果不好;

C、燃烧头污染;

D、检测器故障,多半是老化(但这种现象很少);

E、样品吸收管路堵塞(这种现象经常导致灵敏度下降);

F、气体的燃烧比不对,或者气体压力不够;



2、如何判定AAS氘灯和元素灯的光斑一致?

准备一张白纸,在元素灯和氘灯调整完了后,用一张白纸挡在元素灯灯窗的前面,再用另一张白纸在原子化器的上方找到氘灯的光班,最好是在焦点的地方,然后设法固定。然后把原来的白纸去掉或是打开元素灯,让元素灯的光进来,看看元素灯的光斑是不是和氘灯的光班重合,如果重合就表明调节好了,如果不重合,先调节好氘灯后固定下来,就不要再动了,然后调节元素灯使其光斑与氘灯的光斑重合。



3、用火焰原子吸收法测定时,是不是每次做样前都要做标准曲线呢?

A、最好每次都做标准曲线,如果单次样品量比较多的话,在测试过程中还要加入标准点进行校正。

B、如果每天有很多样品要测试,你就用QC来控制了,如果你控制的QC能过,那你也可以不用做标准曲线了。



4、钢瓶中乙炔气的总压力用到哪个数值时要换气?在运输和使用中的注意事项?

A、一般当钢瓶气体小于0.5MPa时,为安全考虑我们就要考虑换气了。

B、溶解乙炔气瓶必须根据国家《溶解乙炔气瓶安全监察规程》的要求,进行定期技术检验。

C、乙炔气瓶使用前,应稍微打开瓶阀除去瓶口的脏物,安装好专用的乙炔减压器,使减压器位于瓶体最高部位。并检查接头处是否有漏气,确认后调整到规定压力再使用。

D、乙炔气瓶一般应在40℃以下使用,当温度超过40℃时,应采取有效的降温措施。

E、乙炔气瓶不得靠近热源及电气设备,乙炔气瓶应竖直摆放;如果要使用已卧放的乙炔气瓶,必须先直立静止20分钟后再使用。

F、严禁铜、银、汞等及其制品与乙炔接触,必须使用铜合金器具时,合金的含铜量应小于65%。

G、乙炔气瓶内的气体严禁用尽,乙炔气瓶内应留余压0.1MPa~0.3Mpa。

H、在室内或密闭的环境下使用乙炔气瓶,要防止泄漏,加强通风,避免发生燃爆事故。



5、为什么原子吸收点不燃火?

原子吸收不能点火的可能原因如下:

A、看乙炔阀门是否打开,压力表指示压力是否正确。

B、打开空压机,打开空压机体上的放气阀,看空压机内有无水。

C、空压机压力上升后,调节出口压力是否在仪器规定的范围内。

D、查雾化器的的液封盒是否存满水,并装好雾化器。

E、检测点火器或者点火按钮失灵(已坏)。

F、以上都检测无误,请联系维修工程师。


6、原子吸收光谱检出限是怎样测定的?

A、《全球环境监测系统水监测操作指南》中规定:给定置信水平为95%时,样品测定值与零浓度样品的测定值有显著性差异即为检出限(D.L)。这里的零浓度样品是不含待测物质的样品。D.L=4.6×δ 式中:δ为空白平行测定的标准偏差(重复测定11次以上)。

B、美国EPA SW-846中规定方法检出限:MDL=3.143×δ(δ为重复测定7次)。

一般来说,测试仪器的检出限,就用蒸馏水测试11次以上求出标准偏差,然后用3*δ计算仪器检出限。


7、为减少火灾及爆炸发生的可能性,注意以下几点:

A、选择有机溶液时,在满足分析要求的情况下,尽量选择闪点高的有机溶液;

B、不要选择比重低于0.75的有机溶液;

C、不要将装有有机溶液的容器敞盖放在燃烧头附近,喷溶液时,用盖将容器盖好,在盖上通一个2mm的小孔,将进样毛细管插入进样。在满足要求的条件下尽可能少用有机溶液。

D、废液管应采用耐有机溶剂的管子,如腈橡胶。仪器标配废液管不适合有机溶液。液封盒上的通气口不能堵住。

E、废液容器要采用小的、宽口容器,并经常倒空。不要积累大量可燃溶剂。不要采用玻璃容器以防回火时容器爆炸产生尖利碎片。金属容器因不易观察到液面,不宜采用。将容器放置在仪器下可以看到的地方,每天工作完毕后,将废液清除干净。

F、分析工作完成后或每天工作完成后,应将液封盒中的溶液倒空。不要将硝酸或高氯酸残留物与有机溶剂混合。

H、保持燃烧狭缝及雾化室、液封盒清洁。

I、仅在所有安全连锁满足要求时,采用仪器内部点火器进行点火。


8、影响火焰原子吸收光谱仪灵敏度的因素有?

A、灯电流

火焰原子吸收光谱仪使用光源大都是空心阴极灯,空心阴极灯的灯电流大小决定着灯辐射强度。在一定范围内增大灯电流可以增大辐射强度,同时噪音也增大,但是仪器灵敏度降低。如果灯电流过大,会导致灯本身发生自蚀现象而缩短灯使用寿命;会放电不正常。相反,在一定范围内降低灯电流可以降低辐射强度,仪器灵敏度提高,但灯稳定性和信噪比下降。因此,在具体检测工作中,如被测样浓度高时,则使用较大灯电流,以获得较好稳定性;如被测样浓度低时,则在保证稳定性满足要求的前提下,使用较低的灯电流,以获得较好的灵敏度。

B、雾化器

雾化器作用是将试液雾化。它是原子吸收光谱仪重要部件,其性能对测定灵敏度、精密度和化学物理干扰等产生显著影响。雾化器喷雾越稳定,雾滴越微小均匀,雾化效率也就越高,相应灵敏度越高,精密度越好,化学物理干扰越小。雾化器调节目前都是通过人工调节撞击球和毛细管之间相对位置来实现。检测人员应将雾化器调节到雾滴细小而均匀,最好是雾滴在撞击球周围均匀分布。

C、试液提升量

提升量大小影响到灵敏度高低。过高或过低的提升量会使雾化器雾化不稳定。每个厂家仪器提升量范围各不相同,各自有一定变化范围。增大提升量办法有:

(1) 增大助燃气流量,这样增大负压使提升量增大。

(2)缩短进样管长度,缩短进样管长度使管阻力减小,使试液流量增大。相反,如想降低提升量,则可以减小助燃气流量或加长进样管长度。

D、元素的分析线

每种元素的分析线有很多条,通常共振线灵敏度最高,经常被用来作为分析线,但测量较高浓度样品时,就要选择次灵敏线。


E、燃烧头位置

调节燃烧头高度和前后位置,使来自空心阴极灯光束通过自由电子浓度最大火焰区,此时灵敏度最高,稳定性最好。若不需要高灵敏度时,如测定高浓度试液时,可通过旋转燃烧头角度来降低灵敏度,以便有利于检测。

F、火焰类型

火焰类型和状态对灵敏度高低起着重要作用,应根据被测元素特性去选择不同火焰。目前火焰按类型分有空气一氢火焰、空气一乙炔火焰、一氧化氮一乙炔火焰。空气一氢火焰的火焰温度较低,用于测定火焰中容易原子化的元素如砷、硒等;空气一乙炔火焰属于中温火焰,用于测定火焰中较难离解的元素如镁、钙、铜、锌、铅、锰等;一氧化氮一乙炔火焰属于高温火焰,用于测定火焰中难于离解的元素如钒、铝等。

火焰按状态分有贫焰、化学计量焰、富焰。贫焰是指使用过量氧化剂时的火焰,由于大量冷的氧化剂带走火焰中的热量,这种火焰温度较低,又由于氧化剂充分,燃烧完全,火焰具有氧化性气氛,所以这种火焰适用于碱金属元素的测定。化学计量焰是按化学计量关系计算的燃料和氧化剂比率燃烧的火焰,它具有温度高、干扰少、稳定、背景低等特点,除碱金属和易形成难离解氧化物的元素,大多数常见元素常用这种火焰。富焰是便用过量燃料的火焰,由于燃烧不完全,火焰具有较强的还原气氛,所以,这种火焰具有还原性,适用于测定较易于形成难熔氧化物的元素如钥、稀土元素等。


G、狭缝

在其他条件一定的情况下,狭缝的大小是决定灵敏度的又一原因。当被测元素无邻近干扰线时,可采用较大的狭缝。当被测元素有邻近干扰线时,可采用较小的狭缝。


9、校正曲线为何会发生弯曲呢?

光吸收的最简式A=KC,只适用于理想状态均匀稀薄的蒸汽原子,随着吸收层中原子浓度的增加,上述简化关系就不应用了。在高浓度下,分子不成比例地分解;相对于稳定的原子温度,较高浓度下给出的自由原子比率较低。

(1)由于有不被吸收的辐射、杂散光的存在,不可能全部光被吸收到同一程度来保持曲线线性;

(2)由于光源的老化或使用高的灯电流引起的空心灯谱线扩宽和产生自吸;

(3)由于单色器狭缝太宽,则传送到检测器去的谱线不可能只有一条,校正曲线表现出更大的弯曲

(4)样品中元素的电离电位不同,在火焰中发生电离时,不同元素的基态原子数不同。浓度低时,电离度大,吸光度下降多;浓度增高,电离度逐渐减小,吸光度下降程度也逐渐减小,所以引起标准工作曲线向浓度轴弯曲(下部弯曲)。



10、何谓锐线光源?在原子吸收光谱分析中为什么要用锐线光源?

锐线光源是发射线半宽度远小于吸收线半宽度的光源,如空心阴极灯。在使用锐线光源时,光源发射线半宽度很小,并且发射线与吸收线的中心频率一致。这时发射线的轮廓可看作一个很窄的矩形,即峰值吸收系数Kn 在此轮廓内不随频率而改变,吸收只限于发射线轮廓内。这样,求出一定的峰值吸收系数即可测出一定的原子浓度。



11、在原子吸收光度计中为什么不采用连续光源(如钨丝灯或氘灯),而在分光光度计中则需要采用连续光源?

虽然原子吸收光谱中积分吸收与样品浓度呈线性关系,但由于原子吸收线的半宽度很小,如果采用连续光源,要测定半宽度很小的吸收线的积分吸收值就需要分辨率非常高的单色器,目前的技术条件尚达不到,因此只能借助锐线光源,利用峰值吸收来代替。

而分光光度计测定的是分子光谱,分子光谱属于带状光谱,具有较大的半宽度,使用普通的棱镜或光栅就可以达到要求,而且使用连续光源还可以进行光谱全扫描,可以用同一个光源对多种化合物进行测定。

文章(文字)来源:光谱分析交流号 
编辑:songjiajie2010

 
分享:
[ 网刊订阅 ]  [ 仪器设备搜索 ]  [ ]  [ 告诉好友 ]  [ 打印本文 ]  [ 关闭窗口 ] [ 返回顶部 ]
 

 
 
推荐图文
推荐仪器设备
点击排行
 
 
Processed in 0.071 second(s), 19 queries, Memory 0.92 M