食品伙伴网服务号
当前位置: 首页 » 仪器设备 » 理化检测仪器 » 正文

气相色谱仪基础知识及答疑

放大字体  缩小字体 发布日期:2023-07-31
核心提示:色谱法又叫层分析法,它是一种物理分离技术。
 一、气相色谱原理


色谱法又叫层分析法,它是一种物理分离技术。阿德分离原理是使混合物中的各组分在两相间进行分配,其中的一相是不动的,叫做固定相,另一相则是推动混合物流过此固定相的流体,叫做流动相。

当流动相中所含的混合物经过固定相,就会与固定相发生相互作用。由于各组分在性质与结构上的不同,相互作用的大小强弱也有差异。

因此在同一推动力作用下,不同组分在固定相中的滞留时间有长有短,从而按先后秩序从固定相中流出,这种借在两相分配原理而使混合物中各组分获得分离的技术,称为色谱分离技术或色谱法。当用气体为流动相,称为气相色谱。

色谱法具有:分离效能高、分析速度快。样品用量高、灵敏度高。适用范围广等许多化学分析法无可与之比拟的优点。

二、气相色谱仪工作原理

利用试样中各组份在气相和固定液液相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配。

由于固定相对各组份的吸附或溶解能力不同,因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,按顺序离开色谱柱进入检测器,产生的离子流讯号经放大后,在记录器上描绘出各组份的色谱峰。

三、气相色谱仪的组成部分

(1)载气系统:包括气源、气体净化、气体流速控制和测量。

(2)进样系统:包括进样器、汽化室(将液体样品瞬间汽化为蒸气)。

(3)色谱柱和柱温:包括恒温控制装置(将多组分样品分离为单个)。

(4)检测系统:包括检测器,控温装置。

(5)记录系统:包括放大器、记录仪、或数据处理装置、工作站。

四、什么叫保留时间?

从进样开始至每个组分流出曲线达极大值所需的时间,可作为色谱峰位置的标志,此时间称为保留时间,用 t 表示。

五、什么是色谱图?

进样后色谱柱流出物通过检测器系统时,所产生的响应信号时间或载气流出气体积的叫曲线图称为色谱图。

六、什么是色谱峰?峰面积?

1、色谱柱流出组分通过检测器系统时所产生的响应信号的微分曲线称为色谱峰。

2、出峰到峰回到基线所包围的面积,称为峰面积。

七、怎样测定载气流速?

高档色谱仪上均安装有自动测试装置,无自动测试装置可用皂膜流量计测,将皂膜流量计连接在测检测出口(也可将色谱柱与检测器断开皂膜流量计测接在色谱柱一端),测试每分钟的流速。

测完后色谱升温压力表指示会升高,原因是温度升高色谱柱对气体的阻力增加,不要把压力调下来,当色谱温度升高稳流指示不会改变。测试载气流速在室温下测试。

八、怎样控制载气流速?

载气流速的控制主要靠气路上高压钢瓶上的减压阀减压,然后经仪器的稳压阀稳压,再经稳流阀以达到控制载气流量稳定,减压阀给出的压力要高出稳压后的压力。非程序升温色谱一般没有稳流阀,只靠稳压阀控制流速。

九、气相色谱分析怎样测其线速度?

1、一般测定线速度实际上是测定色谱柱的死时间;

2、甲烷作为不滞留物,测定甲烷的保留时间(TCD检测器以空气峰)。

3、用色谱柱的长度除以甲烷的保留时间得到色谱柱的平均线速度。

十、气相色谱分析中如何选择载气流速的最佳操作条件?

在色谱分析中,选择好最佳的载气流速可获得塔板高度的最小值。因此,从速率理论关于峰形扩张公式可求出最佳流速值。通常色谱柱内径4mm,可用流速为30ml/min。

十一、气相色谱分析中如何选择载气的最佳操作条件?

1、载气的性质对柱效和分析时间有影响;

2、用相对分子质量小的载气时,最佳流速和最小塔板高度都比相对分子质量大的载气时优越;

3、用轻载气有利于提高分析速度,但柱效较低;

4、低速时,最好用这样既能提高柱效又能减小噪声;

5、另外,选择载气又要从检测器的灵敏度考虑。

十二、气相色谱分析中如何选择气化室温度的最佳操作条件?

1、气化室温度控制在使样品瞬间气化而不造成样品分解为最佳。

2、一般规律是气化室温度高于样品的沸点温度并要求保持气化温度恒定就可用峰高定量。

十三、色谱分析中,气、液、固样品各用什么进样器进样?

气体样品进样:用注射器进样;用气体定量管进样,常用六通阀。

液体样品进样:微量注射器。

固体样品进样:固体样品溶解后用微量注射器进样,顶空进样法。

十四、气相色谱分析中如何选择柱温的最佳操作条件?

1、一般采用柱温为被分析物的平均沸点左右或稍低一点;

2、柱温不能高于固定液最高使用温度,低于样品分解温度;

3、特殊情况下柱温也可以低于柱温很多(环己酮中环己基过氧化氢色谱分析中环己酮沸点160多度,用55度柱温峰型和出峰速度都很好)。

十五、在气相色谱分析中如何选择柱形、柱径和柱长的最佳操作条件?

1、缩小柱子的直径对提高柱效率,提高分离度是有利的,但直径太小,对分析速度不利;

2、柱子直径与柱曲率半径相差越大越好;

3、一般填充柱柱长多用两米左右,毛细管柱十几、几十米左右。

十六、热导检测器使用时应注意什么?

1、温度,热导池温度应高于或接近柱温,防止样品冷凝;

2、热丝,为避免热丝氧化,要先通载气,再通桥流,关闭时要先关桥流再关。

十七、载气热导池的基本结构有几种?

1、热导池检测器是不锈钢制成池体、池槽和热敏元件所组成的;

2、基本结构有三种:直通型;扩散型;半扩散型。

十八、热导池检测器温度如何控制?

1、热导池检测器温度要求高于柱温,防止分离物质冷凝污染。

2、更重要的是控温精度要求能控制在此。0.05以内。

十九、简述气相色谱检测器的性能指标?

1、灵敏度;2、敏感度;3、线性范围;4、稳定性。

二十、热导检测器(TCD)的基本原理?

1、热导检测器是基于不同的物质有不同的热导系数。

2、在未进样时,两池孔的钨丝温度和阻值减小是相等的。

3、在进样时,载气经参比池,而载气带着试样组分流经测量池,由于被组分与载气组成的混合气体的热导系数与载气的热导系数不同。

4、因此测量池中的钨丝温度发生变化使两池孔中的两根钨丝阻值有了差异。

5、通过电桥测出这个差异,从而测出被测组分含量。

二十一、氢火焰检测器的注意事项是什么?

1、离子头绝缘要好,外壳要接地;

2、氢火焰离子化检测器使用温度应大于是100度;

3、离子头的喷嘴和收集极,在使用一定时间后应进行清洗。

二十二、氢火焰离子检测器(FID)的基本原理?

1、氢火焰检测器是根据色谱流出物中可燃性有机物在氢一氧火焰中发生电离的原理而制成的;

2、由于在火焰附近存在着由收集极和发射极之间所造成的静电场;

3、当被测组分燃烧生成离子,在电场作用下定向移动而形成离子流,经微电流放大器放大,然后到记录仪记录。

(目前氢火焰离子检测器的基本原理说法有两种,一种是在火燃的作用下离子化,另一种是在电场作用下离子化。)

二十三、火焰光度检测器(FPD)的基本原理?

1、主要原理为组分在富氢火焰中燃烧时,组分不同程度的变为碎片或分子。

2、 由于外层电子互相碰撞而被激发,当电子由激发态返回低能态或基态时,发射出特征波长的光谱,这种特征光谱通过经选择滤光片后被测量。

二十四、电子捕获器检测器(ECD)的基本原理?

1、主要原理为检测室内的放射源放出β射线(初级电子),与通过检测室的载气碰撞产生次级电子和正离子,在电场作用上,分别向与自己极性相反的电极运动,形成基流。

2、当具有负电性的组分(即能捕获电子的组分)进入检测室后,捕获了检测室内的电子,变成负电荷的离子,由于电子被组分捕获,使得检测室基流减少,产生色谱峰信号。

二十五、氮磷检测器(NPD)的基本原理?

1、目前认为响应机理主要有气相电离理论和表面电离理论,通常认为气相电离理论能更好地解释NPD工作原理。

2、气相电离理论认为氮、磷化合物先在气相边界层中热化学分解,产生负电性的基团;该电负性基团在与气相的铷原子(Rb)进行化学电离反应,生成铷离子和负离子,负离子在收集极释放出一个电子,并与氢离子反应,同时输出组分信号。

二十六、在气固色谱中,常用的固定相有哪些?

1、活性炭;2、氧化铝;3、硅胶;4、分子筛;5、高分子多孔小球。

色谱柱固定液选择原则是什么?

1、相似相溶原则;

2、利用分子间特殊作用力原则;

3、利用混合固定液原则。

什么是固定相?

在色谱柱内不能移动而能起分离作用的物质称为固定相。

二十七、色谱固定相分几类?

1、一类为具有吸附性的多孔固体物质称吸附剂;

2、一类是能起分离作用的液体物质称为固定液。

二十八、常用的固体吸附固定相有哪些?

常用的固体吸附固定相有:吸附剂、高分子多孔小球、化学键合固定相。

二十九、气相色谱选择固定液的要求是什么?

1、热稳定性好,蒸汽压低,色谱温度下呈液态;

2、试样在固定液中有足够的溶解能力;

3、选择性高;

4、具有化学惰性。

三十、气相色谱用载体应具备哪些特性?

1、应具有大的比表面积;

2、应具有化学惰性;

3、载体形状规则;

4、要有较大的机械强度。

三十一、怎样老化色谱柱?

1、在室温下,将柱子接真空泵的一端接在色谱仪的气化室上,另一端放空;

2、通载气在室温下吹0、5,使柱中空气被吹干净;

3、然后升温,在高于使用温度20-30度的温度下保持12-24。

4、降至室温,完成老化,接检测器。

编辑:songjiajie2010

 
分享:
关键词: 气相色谱
[ 网刊订阅 ]  [ 仪器设备搜索 ]  [ ]  [ 告诉好友 ]  [ 打印本文 ]  [ 关闭窗口 ] [ 返回顶部 ]
 

 
 
推荐图文
推荐仪器设备
点击排行
 
 
Processed in 0.017 second(s), 14 queries, Memory 1.22 M