食品伙伴网服务号
当前位置: 首页 » 检验技术 » 食品采样技术 » 正文

标准曲线需要扣除空白吗?等校准曲线6个典型问题解答

放大字体  缩小字体 发布日期:2023-03-08
核心提示: 标准曲线需要减掉试剂空白来做吗? 不需要。仪器测出来标准系列的响应值可以减掉试剂空白或减掉0管的响应值来做,工作
 标准曲线需要减掉试剂空白来做吗?

 

不需要。仪器测出来标准系列的响应值可以减掉试剂空白或减掉0管的响应值来做,工作中我们也常用0管来做仪器调零。其实没有必要那么麻烦,即使空白或0管有响应值,在构建标准曲线时,我们已经认为该响应值就是0浓度,也就是扣除了这个空白的。

 

 标准曲线需要人为的增加(0,0)点吗?

 

不能。通常的标准系列多是配制0,1,2,3mg/L系列这样的说法,没做实验人为添加(0,0)很不妥,因为很多时候0管进入仪器可能也有响应值,这也是我们考察试剂空白的一个重要步骤。这个0管在某些时候非常重要,比如全血铅测定,我们采用牛血清来基体匹配标准系列,如果此时你用酸做空白或没做实验人为添加(0,0),那你就很难做好标准曲线。所以标准曲线的0管也是做好标准曲线的重要考虑点。

 

什么时候用Y=bX和二次曲线呢?


标准曲线我们通常采用的是Y=a+bX,曲线拟合完必须要做统计检验,且要做统计完备的线性检验和失拟检验,然后再做a与0的差别检验,如果a与0的统计学上无差异,你就可以考虑用Y=bX的拟合曲线,拟合出来后同样做线性检验和失拟检验,如果线性检验合格(P<0.05)且失拟检验合格(p>0.05),此时你就可以采用Y=bX。二次曲线的采用同样是这样的道理,如果你Y=a+bX时拟合不合格,你就考虑用Y=a+bX+cX2,同样做失拟检验,考察拟合的符合情况。如果Y=a+bX和Y=a+bX+cX2都满足拟合检验和失拟检验合格,则采用Y=a+bX形式,这样符合统计学上参数最少的统计简洁性原则。


标准曲线去查含量时是先减空白信号算样品含量还是先算出空白含量相减?


工作中我们常要减掉空白得到样品含量,现有国家标准方法有的推荐先算出空白含量,用样品含量相减,也有推荐先用样品信号减空白信号然后去标准曲线推算含量。而且这两种算法常常差距很大。其实这种差距往往是低含量水平时才出现,在低含量水平通过标准曲线推算含量时,本身不确定度就很大。这两种方法都可以。个人推荐先用样品信号减空白信号然后去标准曲线推算含量,因为这样出来的含量不确定度要小一些,而先算出空白含量再相减就增加了1次标准曲线推算含量时的不确定度,因为好的测量永远是不确定度小的测量。

 

 标准系列的标准溶液体积取用中有效数字该如何写呢?


标准溶液体积取用的有效数字跟你采用的体积量具有直接关系。比如说量取或准确量取等字眼,10mL和10.0mL提示你要采用不同的量具。当我们使用某个量具完成某次体积取用后,读数是按照量具的最小允差决定的,而最小允差是针对最小分度线而言的。当取用10mL体积时,如果用A级10mL的分度吸管,那么10.0mL应该是确定的,因为它的分度线为0.1mL。当取用1mL体积时,如果用A级1mL的分度吸管,那么1.00mL应该是确定的,因为它的分度线为0.01mL。所以我个人意见,到底写10.00还是10.0以最小分度线来确定,最小分度线以下的都为估读。如果你认为估读也是有效数字的话,10.00mL也可以,因为此时的容量允差为0.05mL,但1.000mL就没有太大意义了,因为A级1mL的分度吸管的容量允差已经是0.008mL了。

 

如何做两条标准曲线的检验呢?

 

先从原理上讲:判断两条或多条标准曲线的差异,须检验残差,截距和斜率三项,分别有不同的统计学参数,残差用F检验,截距和斜率采用较为复杂的统计量。

从实际操作讲:多用协方差分析检验截距和斜率的差异,以SPSS为例:

1.先重新整理数据,将y2数据列加到y1下面,变成一个变量y;将x2数据列加到x1下面,变成一个变量x;然后再设定一个新的分组变量group,原来第1组值为1,第2组值为2。 

2.进行协方差分析(第一步分析斜率是否无差异)。Analyze->GeneralLinear Model->Univariate Dependent List:填入y---------将y做为因变量 Fixed Factor:填入group Covaraites:填入x--------将x做为协变量 Model:选Custom Model:填入 x groupx*group---------注意如果变量填入顺序不一样,结果也会不一样。Sum ofsquares下拉列表框:选TypeI 然后点击ok,看结果里x*group这一行的Sig。P值,若大于0.05,则接受原假设,即两条回归直线的斜率无差异,否则拒绝。

3.再来进行截距的无差异分析其实过程跟上面一样,只是Model里去掉了x*group交叉项。Analyze->GeneralLinear Model->Univariate Dependent List:填入y---------将y做为因变量 Fixed Factor:填入group Covaraites:填入x--------将x做为协变量 Model:选Custom Model:填入 x group ---------注意如果变量填入顺序不一样,结果也会不一样。Sum of squares下拉列表框:选TypeI 点击ok后,看group一行的Sig。P值,若P值大于0.05说明两条回归直线截距也无差异,若小于0.05说明截距是有差异的。 

 

编辑:songjiajie2010

 
分享:
关键词: 标准
[ 网刊订阅 ]  [ 检验技术搜索 ]  [ ]  [ 告诉好友 ]  [ 打印本文 ]  [ 关闭窗口 ] [ 返回顶部 ]
 

 
 
推荐图文
推荐检验技术
点击排行
检验技术
 
 
Processed in 0.027 second(s), 12 queries, Memory 0.95 M