1.原子光谱:原子的核外电子一般处在基态运动,当获取足够的能量后,就会从基态跃迁到激发态,处于激发态不稳定(寿命小于10-8 s),迅速回到基态时,就要释放出多余的能量,若此能量以光的形式出显,既得到发射光谱。
原子吸收光谱法(AAS)的基本原理是基于物质所产生的原子蒸气对特定谱线的吸收作用来进行定量分析。
2激发电位是指从低能级到高能级需要的能量。第一激发态,又回到基态,发射出光谱线,称共振发射线。同样从基态跃迂至第一激发态所产生的吸收谱线称为共振吸收线(简称为共振线),即具有最低激发电位的谱线。由激发态直接跃迁至基态所辐射的谱线称为共振线。由较低级的激发态(第一激发态)直接跃迁至基态的谱线称为第一共振线,一般也是元素的最灵敏线。当该元素在被测物质里降低到一定含量时,出现的最后一条谱线,这是最后线,也是最灵敏线。用来测量该元素的谱线称分析线。
3实际分辩率:指摄谱仪的每毫米感光板上所能分辩开的谱线的条数。或在感光板上恰能分辨出来的两条谱线的距离。
理论分辩率R=λ/Δλ (λ为两谱线的平均值,Δλ为它们的差值)。
4.锐线光产生原理:在高压电场下, 阴极向正极高速飞溅放电, 与载气原子碰撞, 使之电离放出二次电子, 而使场内正离子和电子增加以维持电流。 载气离子在电场中大大加速, 获得足够的能量, 轰击阴极表面时, 可将被测元素原子从晶格中轰击出来, 即谓溅射, 溅射出的原子大量聚集在空心阴极内, 与其它粒子碰撞而被激发, 发射出相应元素的特征谱线-----共振谱线。
5.化学计量火焰 由于燃气与助燃气之比与化学计量反应关系相近,又称为中性火焰 ,这类火焰, 温度高、稳定、干扰小背景低,适合于许多元素的测定。
6.富燃火焰 指燃气大于化学元素计量的火焰。其特点是燃烧不完全,温度略低于化学火焰,具有还原性,适合于易形成难解离氧化物的元素测定;干扰较多,背景高。
7.贫燃火焰 指助燃气大于化学计量的火焰,它的温度较低,有较强的氧化性,有利于测定易解离,易电离元素,如碱金属。
8.光谱通带: W = D·S 被测元素共振吸收线与干扰线近,选用W要小,干扰线较远,可用大的W,一般单色器色散率一定,仅调狭缝确定W。
9.物理干扰: 是指试液与标准溶液物理性质有差别而产生的干扰。粘度、表面张力或溶液密度等变化,影响样品雾化和气溶胶到达火焰的传递等会引起的原子吸收强度的变化。非选择性干扰。消除方法:配制被测试样组成相近溶液,或用标准化加入法。浓度高可用稀释法
10.化学干扰: 化学干扰是指被测元原子与共存组分发生化学反应生成稳定的化合物,影响被测元素原子化。
11.电离干扰:在高温下原子会电离使基态原子数减少, 吸收下降, 称电离干扰. 消除的方法是加入过量消电离剂, 所谓的消电离剂, 是电离电位较低的元素, 加入时, 产生大量电子, 抑制被测元素电离.
12.光谱干扰:吸收线重叠待测元素分析线与共存元素的吸收线重叠
13.背景干扰:背景干扰也是光谱干扰,主要指分子吸与光散射造成光谱背景。分子吸收是指在原子化过程中生成的分子对辐射吸收,分子吸收是带光谱。光散射是指原子化过程中产生的微小的固体颗粒使光产生散射,造成透过光减小,吸收值增加。背景干扰,一般使吸收值增加。产生正误差。
标准加入法能消除基体干扰,不能消背景干扰。使用时,注意要扣除背景干扰。
14.习惯灵敏度:特征浓度,是指产生1%吸收时,水溶液中某元素的浓度。通常用mg/ml/1%表示
15.质谱法是通过将样品转化为运动的气态离子并按质荷比(M/Z)大小进行分离并记录其信息的分析方法。所得结果以图谱表达,即所谓的质谱图(亦称质谱,Mass Spectrum)。根据质谱图提供的信息可以进行多种有机物及无机物的定性和定量分析、复杂化合物的结构分析、样品中各种同位素比的测定及固体表面的结构和组成分析等。而在实际工作中,有时很难找到相邻的且峰高相等的两个峰,同时峰谷又为峰高的10%。在这种情况下,可任选一单峰,测其峰高5%处的峰宽W0.05,即可当作上式中的Δm,此时分辨率定义为 R = m/W0.05
质谱仪的分辨本领由几个因素决定:(i)离子通道的半径;(ii)加速器与收集器狭缝宽度;(iii)离子源的性质。
质谱仪的灵敏度有绝对灵敏度、相对灵敏度和分析灵敏度等几种表示方法。
绝对灵敏度是指仪器可以检测到的最小样品量;相对灵敏度是指仪器可以同时检测的大组分与小组分含量之比;分析灵敏度则指输入仪器的样品量与仪器输出的信号之比。
16.质量分析器的主要类型有:磁分析器、飞行时间分析器、四极滤质器、离子捕获分析器和离子回旋共振分析器等。
17.分子离子峰:试样分子在高能电子撞击下产生正离子
18.分子离子的质量对应于中性分子的质量,这对解释本知质谱十分重要。几乎所有的有机分子都可以产生可以辨认的分子离子峰,有些分子如芳香环分子可产生较大的分子离子峰,而高分子量的烃、脂肪醇、醚及胺等则产生较小的分子离子峰。若不考虑同位素的影响,分子离子应该具有最高质量。分子中若含有偶数个氮原子,则相对分子质量将是偶数;反之,将是奇数。这就是所谓的“氮律”。
19.原子荧光光谱法是1964年以后发展起来的分析方法。原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。但所用仪器与原子吸收光谱法相近。
原子荧光光谱的产生:气态自由原子吸收特征辐射后跃迂到较高能级,然后又跃迁回到基态或较低能级。同时发射出与原激发辐射波长相同或不同的辐射即原子荧光。
原子荧光为光致发光,二次发光,激发光源停止时,再发射过程立即停止。
原子荧光的类型 :原子荧光分为共振荧光,非共振荧光与敏化荧光等三种类型。
(1)共振荧光 发射与原吸收线波长相同的荧光为共振荧光。
(2)非共振荧光 荧光的波长与激发光不同时,称非共振荧光。 ( i. 直跃线荧光,ii. 阶跃线荧光,iii. anti—stores荧光。i和ii均为Stores荧光。)
(3)敏化荧光 受激发的原子与另一种原子碰撞时,把激发能传递给另一个原子使其激发,后者再从辐射形式去激发而发射荧光即为敏化荧光。
荧光猝灭 受激原子和其他粒子碰撞,把一部分能量变成热运动与其他形式的能量,因而发生无辐射的去激发过程。
20.不动的一相,称一为固定相;另一相是携带样品流过固定相的流动体,称为流动相。
不被固定相吸附或溶解的物质进入色谱柱时,从进样到出现峰极大值所需的时间称为死时间
试样从进样开始到柱后出现峰极大点时所经历的时间,称为保留时间
某组份的保留时间扣除死时间后称为该组份的调整保留时间,即 tR′ = tR-tM
死体积可由死时间与流动相体积流速F0(L/min)计算: VM = tM·F0
指从进样开始到被测组份在柱后出现浓度极大点时所通过的流动相体积。保留体积与保留时间t。的关系如下: VR = tR·F0
某组份的保留体积扣除死体积后,称该组份的调整保留体积,即 VR′ = VR- VM
某组份2的调整保留值与组份1的调整保留值之比,称为相对保留值(必须注意,相对保留值绝对不是两个组份保留时间或保留体积之比.)
21.从色谱流出曲线上,可以得到许多重要信息:
(l)根据色谱峰的个数,可以判断样品中所合组 份的最少个数.
(2)根据色谱峰的保留值(或位置),可以进行定性分析.
(3) 根据色谱峰下的面积或峰高,可以进行定量分析.
(4)色谱峰的保留值及其区域宽度,是评价色谱柱分离效能的依据.
(5)色谱峰两峰间的距离,是评价固定相(和流动相)选择是否合适的依据.
22.色谱分析的目的是将样品中各组分彼此分离,组分要达到完全分离,两峰间的距离必须足够远,两峰间的距离是由组分在两相间的分配系数决定的,即与色谱过程的热力学性质有关。但是两峰间虽有一定距离,如果每个峰都很宽,以致彼此重叠,还是不能分开。这些峰的宽或窄是由组分在色谱柱中传质和扩散行为决定的,即与色谱过程的动力学性质有关。因此,要从热力学和动力学两方面来研究色谱行为。
描述这种分配的参数称为分配系数见它是指在一定温度和压力下,组分在固定相和流动相之间分配达平衡时的浓度之比值(K)
分配比又称容量因子,它是指在一定温度和压力下,组分在两相间分配达平衡时,分配在固定相和流动相中的质量比。(k)
k值越大,说明组分在固定相中的量越多,相当于柱的容量大,因此又称分配容量或容量因子。它是衡量色谱柱对被分离组分保留能力的重要参数。k值也决定于组分及固定相热力学性质。它不仅随柱温、柱压变化而变化,而且还与流动相及固定相的体积有关。
分配比k值可直接从色谱图测得。设流动相在柱内的线速度为u,组分在柱内线速度为us,由于固定相对组分有保留作用,所以us<u.此两速度之比称为滞留因子Rs。
通过选择因子α把实验测量值k与热力学性质的分配系数K直接联系起来,α对固定相的选择具有实际意义。如果两组分的K或k值相等,则α=1,两个组分的色谱峰必将重合,说明分不开。两组分的K或k值相差越大,则分离得越好。因此两组分具有不同的分配系数是色谱分离的先决条件。
R值越大,表明相邻两组分分离越好。一般说,当R<1时,两峰有部分重叠;当R=1时,分离程度可达98%;当R=1.5时,分离程度可达99.7%。通常用R=1.5作为相邻两组分已完全分离的标志。
23.气相色谱检测器是把载气里被分离的各组分的浓度或质量转换成电信号的装置。目前检测器的种类多达数十种。根据检测原理的不同,可将其分为浓度型检测器和质量型检测器两种:热导检测器和电子捕获检测器(浓度型检测器)火焰离子化检测器和火焰光度检测器(质量型检测器)
热导检测器:几乎对所有物质都有响应,通用性好,而且线性范围宽,价格便宜,因此是应用最广,最成熟的一种检测器。
火焰离子化检测器:比热导检测器的灵敏度高约103倍;检出限低,可达10-12g·S-1
一个优良的检测器应具以下几个性能指标:灵敏度高,捡出限低,死体积小,响应迅速,线性范围宽,稳定性好。
24.柱温的选择
在使最难分离的组分有尽可能好的分离前提下,采取适当低的柱温,但以保留时间适宜,峰形不拖尾为度。
柱温不能高于固定液的最高使用温度
进样量的选择:一般说来,色谱柱越粗、越长,固定液含量越高,容许进样量越大。
25.气相色谱法分析对象只限于分析气体和沸点较低的化合物,它们仅占有机物总数的20%。对于占有机物总数近80%的那些高沸点、热稳定性差、摩尔质量大的物质,目前主要采用高效液相色谱法进行分离和分析。
气相色谱采用流动相是惰性气体,它对组分没有亲和力,即不产生相互作用力,仅起运载作用。而高效液相色谱法中流动相可选用不同极性的液体,选择余地大,它对组分可产生一定亲和力,并参与固定相对组分作用的剧烈竞争。因此,流动相对分离起很大作用,相当于增加了一个控制和改进分离条件的参数,这为选择最佳分离条件提供了极大方便。
气相色谱一般都在较高温度下进行的,而高效液相色谱法则经常可在室温条件下工作。
总之,高效液相色谱法是吸取了气相色谱与经典液相色谱优点,并用现代化手段加以改进,因此得到迅猛的发展。目前高效液相色谱法已被广泛应用于分析对生物学和医药上有重大意义的大分子物质,例如蛋白质、核酸、氨基酸、多糖类、植物色素、高聚物、染料及药物等物质的分离和分析。
一般可分为4个主要部分:高压输液系统,进样系统,分离系统和检测系统。
液一液分配色谱法(LLPC)液液分配色谱的分离原理基本与液液萃取相同,都是根据物质在两种互不相溶的液体中溶解度的不同,具有不同的分配系数。
26.化学键合相色谱法(CBPC)采用化学键合相的液相色谱称为化学键合相色谱法,简称键合相色谱。
液一固吸附色谱法(LSAC) 当流动相通过固定相(吸附剂)时,吸附剂表面的活性中心就要吸附流动相分子。同时,当试样分子(X)被流动相带入柱内,只要它们在固定相有一定程度的保留就要取代数目相当的已被吸附的流动相溶剂分用)于是,在固定相表面发生竞争吸附:
离子交换色谱法(IEC) 离子交换原理和液相色谱技术的结合来测定溶液中阳离子和阴离子的一种分离分析方法。
离子色谱法(IC) 离子色谱法是由离子交换色谱法派生出来的一种分离方法。通过分离柱后的样品再经过抑制柱,使具有高背景电导的流动相转变成低背景电导的流动相,从而用电导检测器可直接检测各种离子的含量。
离子对色谱法(IPC) 离子对色谱法是将一种(或数种)与溶质离子电荷相反的离子(称对离子或反离子)加到流动相或固定相中,使其与溶质离子结合形成离子对,从而控制溶质离子保留行为的一种色谱法。
尺寸排阻色谱法(SEC)基于试样分子的尺寸和形状不同来实现分离的。体积大的分子不能渗透到孔穴中去而被排阻,较早地被淋洗出来;中等体积的分子部分渗透;小分子可完全渗透入内,最后洗出色谱柱。