纵观当前基因芯片的研究趋势,基因芯片在今后几年内可能的发展方向,可能有以下几个方面:
1.进一步提高探针阵列的集成度,如有多家公司的芯片阵列的集成度已达1.0×105左右,这样基因数量在1.0×105以下的生物体(大多数生物体)的基因表达情况只用一块芯片即可包括。
2 提高检测的灵敏度和特异性。如检测系统的优化组合和采用高灵敏度的荧光标志。多重检测以提高特异性,减少假阳性。
4高自动化、方法趋于标准化、简单化,成本降低。价格高昂是目前推广应用的主要障碍之一,但随着技术的革新,基因芯片的价格将会大大降低。
5高稳定性。寡核苷酸探针、RNA均不稳定,易受破坏。而肽核酸(PNA)有望取代普通RNA/DNA探针,可以确保探针的高稳定性。
6 研制新的应用芯片,如1999年美国环保局(EPA)组织专家研讨会,讨论了毒理学芯片的发展策略。近来多种新的生物芯片不断问世,这是物理学、生物学与计算机科学共同的结晶。
7 研制芯片新检测系统和分析软件,以充分利用生物信息。
8 芯片技术将与其它技术结合使用,如基因芯片PCR、纳米芯片等。
9不同生物芯片间综合应用,如蛋白质芯片与基因芯片间相互作用等,可用于了解蛋白质与基因间相互作用的关系。
当前,基因芯片数量呈几何级数在增长,功能也日益完善,但价格却大大降低。可以预见,基因芯片可能在未来3-5年,也即到2005年左右,将在医学和生物学领域中得到广泛应用,甚至普及使用!到2010年它可能成为常规的实验技术,正如个人电脑的迅速普及一样。
基因芯片作为生物芯片的代表,其发展目标同生物芯片的目标一样是“芯片实验室”(Lab-on-chip),也即将整个生化检测分析过程缩微到芯片上。“芯片实验室”通过微细加工工艺制作的微滤器、微反应器、微泵、微阀门、微电极等以实现对生物样品从制备、生化反应到检测和分析的全过程,而且实验过程趋于自动化从而极大地缩短的检测和分析时间,节省了实验材料,而且又降低人为主观因素,大大提高实验的客观性。
总之,基因芯片技术发展到今天不过短短几年时间,虽然还存在这样或那样的问题,但其在基因表达谱分析、基因诊断、药物筛选及序列分析等诸多领域已呈现出广阔的应用前景,随着研究的不断深入和技术的更加完善基因芯片一定会在生命科学研究领域发挥出其非凡的作用。基因芯片最终的意义和目的不再于本身,而在于它极大地提高了人类认识生命本质的能力和手段,为揭示人类这个复杂网络系统打下基础。从某种意义上我们可以这样认为:基因的结构或种类决定物种;基因的功能或表达则决定生命,即生物的生、老、病、死。基因芯片技术将为我们提供一条认识生命本质的捷径。当然基因芯片并非万能,基因的表达并非代表生命活动本质,生命执行者应是蛋白质,因而基因芯片必需同蛋白组学相关技术,如二维凝胶电泳、蛋白质芯片、大规模双杂交体系等相结合才有望真正揭示生命活动的时空过程。